Extensions 1→N→G→Q→1 with N=C4 and Q=D4xC32

Direct product G=NxQ with N=C4 and Q=D4xC32
dρLabelID
D4xC3xC12144D4xC3xC12288,815

Semidirect products G=N:Q with N=C4 and Q=D4xC32
extensionφ:Q→Aut NdρLabelID
C4:1(D4xC32) = C32xC4:1D4φ: D4xC32/C3xC12C2 ⊆ Aut C4144C4:1(D4xC3^2)288,824
C4:2(D4xC32) = C32xC4:D4φ: D4xC32/C62C2 ⊆ Aut C4144C4:2(D4xC3^2)288,818

Non-split extensions G=N.Q with N=C4 and Q=D4xC32
extensionφ:Q→Aut NdρLabelID
C4.1(D4xC32) = C32xD16φ: D4xC32/C3xC12C2 ⊆ Aut C4144C4.1(D4xC3^2)288,329
C4.2(D4xC32) = C32xSD32φ: D4xC32/C3xC12C2 ⊆ Aut C4144C4.2(D4xC3^2)288,330
C4.3(D4xC32) = C32xQ32φ: D4xC32/C3xC12C2 ⊆ Aut C4288C4.3(D4xC3^2)288,331
C4.4(D4xC32) = C32xC4.4D4φ: D4xC32/C3xC12C2 ⊆ Aut C4144C4.4(D4xC3^2)288,821
C4.5(D4xC32) = C32xC4:Q8φ: D4xC32/C3xC12C2 ⊆ Aut C4288C4.5(D4xC3^2)288,825
C4.6(D4xC32) = D8xC3xC6φ: D4xC32/C3xC12C2 ⊆ Aut C4144C4.6(D4xC3^2)288,829
C4.7(D4xC32) = SD16xC3xC6φ: D4xC32/C3xC12C2 ⊆ Aut C4144C4.7(D4xC3^2)288,830
C4.8(D4xC32) = Q16xC3xC6φ: D4xC32/C3xC12C2 ⊆ Aut C4288C4.8(D4xC3^2)288,831
C4.9(D4xC32) = C32xC4.D4φ: D4xC32/C62C2 ⊆ Aut C472C4.9(D4xC3^2)288,318
C4.10(D4xC32) = C32xC4.10D4φ: D4xC32/C62C2 ⊆ Aut C4144C4.10(D4xC3^2)288,319
C4.11(D4xC32) = C32xD4:C4φ: D4xC32/C62C2 ⊆ Aut C4144C4.11(D4xC3^2)288,320
C4.12(D4xC32) = C32xQ8:C4φ: D4xC32/C62C2 ⊆ Aut C4288C4.12(D4xC3^2)288,321
C4.13(D4xC32) = C32xC22:Q8φ: D4xC32/C62C2 ⊆ Aut C4144C4.13(D4xC3^2)288,819
C4.14(D4xC32) = C32xC8:C22φ: D4xC32/C62C2 ⊆ Aut C472C4.14(D4xC3^2)288,833
C4.15(D4xC32) = C32xC8.C22φ: D4xC32/C62C2 ⊆ Aut C4144C4.15(D4xC3^2)288,834
C4.16(D4xC32) = C32xC22:C8central extension (φ=1)144C4.16(D4xC3^2)288,316
C4.17(D4xC32) = C32xC4wrC2central extension (φ=1)72C4.17(D4xC3^2)288,322
C4.18(D4xC32) = C32xC4:C8central extension (φ=1)288C4.18(D4xC3^2)288,323
C4.19(D4xC32) = C32xC8.C4central extension (φ=1)144C4.19(D4xC3^2)288,326
C4.20(D4xC32) = C32xC4oD8central extension (φ=1)144C4.20(D4xC3^2)288,832

׿
x
:
Z
F
o
wr
Q
<